

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pycollada 0.4 documentation

Welcome to pycollada’s documentation

Source Code

The source code for pycollada lives on github [https://github.com/pycollada/pycollada]

Tutorial

	Introduction

	Features
	Geometry

	Source Data

	Materials

	Lights

	Cameras

	Scenes

	Controllers

	Additional Features

	Installation
	github

	Python Package Index

	Loading A Collada Document

	Collada Object Structure

	Creating A Collada Object

	Changelog
	0.4 (2012-07-31)
	Backwards Compatibility Notes

	New Features

	Bug Fixes

	0.3 (2011-08-31)
	Backwards Compatibility Notes

	New Features

	Bug Fixes

	0.2.2 (2011-05-03)

	0.2.1 (2011-04-15)

	0.2 (2011-04-15)

	0.1 (2009-02-08)

Reference

	API Summary

	API Reference

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 Introduction

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

Introduction

pycollada is a python module for creating, editing and loading
COLLADA [http://www.collada.org/], which is a COLLAborative Design Activity
for establishing an interchange file format for interactive 3D applications.

The library allows you to load a COLLADA file and interact with it as a python object.
In addition, it supports creating a collada python object from scratch, as well as
in-place editing.

pycollada uses lxml [http://lxml.de/] for XML loading, construction, and saving.
numpy [http://numpy.scipy.org/] is used for numerical arrays. Both of these libraries
are impleted in C/C++ which makes pycollada quite fast.

pycollada was originally written by Alejandro Conty Estevez of Scopia Visual Interfaces
Systems in 2009. Since 2011, the library is now maintained by Jeff Terrace. For a list
of additional contributors, see the AUTHORS file included with distribution.

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 Features

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

Features

Geometry

	Triangles a set of triangles

	Polylist a set of polygons with no holes

	Polygons a set of polygons that can contain holes (holes unimplemented, currently an alias for Polylist)

	Lines a set of lines

Source Data

	Vertex

	Normals

	Multiple texture coordinate sets

Materials

	Shader types: phong, lambert, blinn, constant

	Effect attributes: emission, ambient, diffuse, specular, shininess, reflective, reflectivity, transparent, transparency

	Texture support: Can read from local file, zip archives, or a custom auxiliary file handler

	Loads texture images with PIL if available

Lights

	Directional

	Ambient

	Point

	Spot

Cameras

	Perspective

Scenes

	Full scene construction

	Transformations: rotate, scale, translate, matrix, lookat (for cameras)

	Supports iterating through a scene, yielding transformed geometry

Controllers

	Currently experimental (more support coming)

	Morph

	Skin

Additional Features

	Fast triangulation of polygons

	Fast computation of normals

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 Installation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

Installation

github

The source code for pycollada is available on github here: https://github.com/pycollada/pycollada

To pull a read-only copy, you can clone the repository:

git clone git://github.com/pycollada/pycollada.git pycollada

Python Package Index

pycollada is available as a package at: http://pypi.python.org/pypi/pycollada/

You can also use easy_install:

easy_install pycollada

On Mac OS X, try this if you get an error installing lxml:

export ARCHFLAGS="arch i386 -arch x86_64"
easy_install pycollada

On Ubuntu, install these dependencies first:

apt-get install python-lxml python-numpy python-dateutil
easy_install pycollada

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 Loading A Collada Document

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

Loading A Collada Document

Collada documents can be loaded with the Collada class:

mesh = Collada('file.dae')

Zip archives are also supported. The archive will be searched for
a dae file.

The constructor can also accept a file-like object:

f = open('file.dae')
mesh = Collada(f)

Note that this will also work with the StringIO module. When
loading from non-file sources, the aux_file_loader parameter can
be passed to the constructor. This is useful if loading from
an unusual source, like a database:

dae_file = open('file.dae')
dae_data = dae_file.read()
texture_file = open('texture.jpg')
texture_data = texture_file.read()

def my_aux_loader(filename):
 if filename == 'texture.jpg':
 return texture_data
 return None

mesh = Collada(StringIO(dae_data), aux_file_loader=my_aux_loader)

When using the Collada object (see Collada Object Structure), if you try and
read a texture, the my_aux_loader function will be invoked.

Loading a collada document can result in an exception being thrown.
For a list of possible exceptions, see Exceptions.
Sometimes, you may want to ignore some exceptions and let the loader
try to continue loading the file. For example, the following will
ignore errors about broken references and features that pycollada
doesn’t support:

mesh = Collada('file.dae', ignore=[DaeUnsupportedError, DaeBrokenRefError])

If any errors occurred during the load, you can find them in Collada.errors.

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 Collada Object Structure

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

Collada Object Structure

After loading a collada document, all of the information about the
file is stored within the Collada object. For example, consider the
following code:

>>> from collada import *
>>> mesh = Collada('duck_triangles.dae')
>>> mesh
<Collada geometries=1>

This sample file is located in collada/tests/data of the pycollada
distribution. We can now explore the attributes of the Collada
class.

Let’s see what Collada.geometries it has:

>>> mesh.geometries
[<Geometry id=LOD3spShape-lib, 1 primitives>]

Each geometry has a number of Source objects that contain raw
source data like an array of floats. It then has a number of Primitive
objects contained. Let’s inspect them:

>>> geom = mesh.geometries[0]
>>> geom.primitives
[<TriangleSet length=4212>]

In this case, there is only a single primitive contained in the geometry and it’s
a set of triangles. The TriangleSet object lets us get at the vertex,
normal, and texture coordinate information. There are index properties that index
into the source arrays, and the sources are also automatically mapped for you.
You can iterate over the triangle set to yield individual Triangle
objects:

>>> triset = geom.primitives[0]
>>> trilist = list(triset)
>>> len(trilist)
4212
>>> trilist[0]
<Triangle ([-23.93639946 11.53530025 30.61249924], [-18.72640038 10.1079998 26.6814003], [-15.69919968 11.42780018 34.23210144], "blinn3SG")>

The triangle object has the vertex, normal, and texture coordinate data associated
with the triangle, as well as the material it references. Iterating over the triangle
set is convenient, but it can be slow for large meshes. Instead, you can access the
numpy arrays in the set. For example, to get the vertex, normal, and texture coordinate
for the first triangle in the set:

>>> triset.vertex[triset.vertex_index][0]
array([[-23.93639946, 11.53530025, 30.61249924],
 [-18.72640038, 10.1079998 , 26.6814003],
 [-15.69919968, 11.42780018, 34.23210144]], dtype=float32)
>>> triset.normal[triset.normal_index][0]
array([[-0.192109 , -0.934569 , 0.299458],
 [-0.06315 , -0.99362302, 0.093407],
 [-0.11695 , -0.92131299, 0.37081599]], dtype=float32)
>>> triset.texcoordset[0][triset.texcoord_indexset[0]][0]
array([[0.866606 , 0.39892399],
 [0.87138402, 0.39761901],
 [0.87415999, 0.398826]], dtype=float32)

These are numpy arrays which allows for fast retrieval and computations.

The collada object also has arrays for accessing Camera, Light,
Effect, Material, and Scene objects:

>>> mesh.cameras
[<Camera id=cameraShape1>]
>>> mesh.lights
[<DirectionalLight id=directionalLightShape1-lib>]
>>> mesh.effects
[<Effect id=blinn3-fx type=blinn>]
>>> mesh.materials
[<Material id=blinn3 effect=blinn3-fx>]
>>> mesh.scenes
[<Scene id=VisualSceneNode nodes=3>]

A collada scene is a graph that contains nodes. Each node can have transformations
and a list of child nodes. A child node can be another node or an instance of a geometry,
light, camera, etc. The default scene is contained in the Collada.scene attribute.
Let’s take a look:

>>> mesh.scene
<Scene id=VisualSceneNode nodes=3>
>>> mesh.scene.nodes
[<Node transforms=3, children=1>, <Node transforms=4, children=1>, <Node transforms=4, children=1>]

We could write code to iterate through the scene, applying transformations on bound objects,
but the Scene object already does this for you via its Scene.objects() method. For
example, to find all of the instantiated geometries in a scene and have them bound to a
material and transformation:

>>> boundgeoms = list(mesh.scene.objects('geometry'))
>>> boundgeoms
[<BoundGeometry id=LOD3spShape-lib, 1 primitives>]

Notice that we get a BoundGeometry here. We can also pass in light, camera, or
controller to get back a BoundLight, BoundCamera, or BoundController,
respectively. The bound geometry is very similar to the geometry we looked through above. We can use
the iterative method:

>>> boundprims = list(boundgeoms[0].primitives())
>>> boundprims
[<BoundTriangleSet length=4212>]
>>> boundtrilist = list(boundprims[0])
>>> boundtrilist[0]
<Triangle ([-23.93639946 -30.61249924 11.53530025], [-18.72640038 -26.6814003 10.1079998], [-15.69919968 -34.23210144 11.42780018], "<Material id=blinn3 effect=blinn3-fx>")>

or by accessing the numpy arrays directly:

>>> boundprims[0].vertex[boundprims[0].vertex_index][0]
array([[-23.93639946, -30.61249924, 11.53530025],
 [-18.72640038, -26.6814003 , 10.1079998],
 [-15.69919968, -34.23210144, 11.42780018]], dtype=float32)

In this case, the triangle is identical to above. This is because the collada duck example only has
identity transformations. We can inspect these in the scene:

>>> mesh.scene.nodes[0].transforms
[<RotateTransform (0.0, 0.0, 1.0) angle=0.0>, <RotateTransform (0.0, 1.0, 0.0) angle=0.0>, <RotateTransform (1.0, 0.0, 0.0) angle=0.0>]
>>> mesh.scene.nodes[0].children
[<GeometryNode geometry=LOD3spShape-lib>]

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 Creating A Collada Object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

Creating A Collada Object

In this section, we outline how to create a collada document from scratch.
First, let’s create an empy collada document:

>>> from collada import *
>>> mesh = Collada()

We could save this out, but it would be completely blank. Let’s first add
a Material to the document:

>>> mesh = Collada()
>>> effect = material.Effect("effect0", [], "phong", diffuse=(1,0,0), specular=(0,1,0))
>>> mat = material.Material("material0", "mymaterial", effect)
>>> mesh.effects.append(effect)
>>> mesh.materials.append(mat)

Note that the second argument to Effect is for parameters. These
are used for textures. We omit textures for simplicity here.

Next, let’s first create some source arrays. These are going to be used to
create a triangle set later:

>>> import numpy
>>> vert_floats = [-50,50,50,50,50,50,-50,-50,50,50,
... -50,50,-50,50,-50,50,50,-50,-50,-50,-50,50,-50,-50]
>>> normal_floats = [0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,
... 0,1,0,0,1,0,0,1,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,-1,0,0,
... -1,0,0,-1,0,0,-1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,-1,
... 0,0,-1,0,0,-1,0,0,-1]
>>> vert_src = source.FloatSource("cubeverts-array", numpy.array(vert_floats), ('X', 'Y', 'Z'))
>>> normal_src = source.FloatSource("cubenormals-array", numpy.array(normal_floats), ('X', 'Y', 'Z'))

Now that we have some sources, let’s create a Geometry and add
the sources to it:

>>> geom = geometry.Geometry(mesh, "geometry0", "mycube", [vert_src, normal_src])

To add a triangle set to the geometry, we can call the Geometry.createTriangleSet()
method. To do this, we need to define the inputs to the triangle set. In this case, we
are going to input the arrays we previously defined:

>>> input_list = source.InputList()
>>> input_list.addInput(0, 'VERTEX', "#cubeverts-array")
>>> input_list.addInput(1, 'NORMAL', "#cubenormals-array")

This says to use the source with identifier cubeverts-array as the vertex source
and source with identifier cubenormals-array as the normal source. The offsets
indicate that the vertex data is the first offset in the index array and the normal
data is the second offset in the index array. Let’s now create the index array:

>>> indices = numpy.array([0,0,2,1,3,2,0,0,3,2,1,3,0,4,1,5,5,6,0,
... 4,5,6,4,7,6,8,7,9,3,10,6,8,3,10,2,11,0,12,
... 4,13,6,14,0,12,6,14,2,15,3,16,7,17,5,18,3,
... 16,5,18,1,19,5,20,7,21,6,22,5,20,6,22,4,23])

Now that we have an index array, an input list, and a material, we can create a
triangle set and add it to the geometry’s list of primitives. We then add it to
the list of geometries in the mesh:

>>> triset = geom.createTriangleSet(indices, input_list, "materialref")
>>> geom.primitives.append(triset)
>>> mesh.geometries.append(geom)

We now have everything we need in the object except for a scene. To get the geometry
to show up, we have to create a scene. First, we instantiate the geometry into a scene
node, mapping it to a material:

>>> matnode = scene.MaterialNode("materialref", mat, inputs=[])
>>> geomnode = scene.GeometryNode(geom, [matnode])
>>> node = scene.Node("node0", children=[geomnode])

Now that we have the scene node, we can create a scene, add the node to the scene,
add the scene to the document, and then set our scene as the default:

>>> myscene = scene.Scene("myscene", [node])
>>> mesh.scenes.append(myscene)
>>> mesh.scene = myscene

We can now save the document to a file:

>>> mesh.write('/tmp/test.dae')

If you load this file, it should look like a red cube. Here’s a screenshot:

[image: _images/cube.png]

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 Changelog

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

Changelog

0.4 (2012-07-31)

Backwards Compatibility Notes

	Python 2.5 is no longer supported. Supported versions are now 2.6, 2.7 and 3.2.

New Features

	Added support for reading the opaque attribute from <transparent> tag.

	Normals and texture coordinate indices are now available in shapes (Triangle and Polygon).

	Library is now compatible with python’s built-in ElementTree API instead of requiring lxml. lxml is still recommended.

	Added support for Python 3.2. Supported versions are now 2.6, 2.7 and 3.2.

	Added support for index_of_refraction in <effect>.

	Added optional parameter to Collada that does XML schema validation when saving.

	Automatically corrects broken files that don’t have correct xfov, yfov, and aspect ratio in cameras.

Bug Fixes

	Fix the default value for transparency in Effect. Now correctly defaults to 1.0 when opaque mode is A_ONE, and 0.0 when opaque mode is RGB_ZERO.

	Fixed bug where BoundPolylist was not returning the correct length value.

	Removed support for RGB from Effect since it’s not valid in the spec. If an RGB is given, a fourth A channel is automatically added as 1.0.

	Made instance_geometry not write an empty bind_material if it’s empty since it breaks validation.

	Made saving strip out empty <library_*> tags since it breaks validation.

0.3 (2011-08-31)

Backwards Compatibility Notes

	If using the old Camera object, this has been changed to an abstract class
with types for PerspectiveCamera and OrthographicCamera

	If using the old Collada.assetInfo dictionary to read asset information, this
has been changed to an object. See documentation for more information.

New Features

	Added support for bump maps inside the extra tag of an effect

	Added texbinormal and textangent to triangle sets

	Added a method to generate texture tangents and binormals

	Added detection for double_sided

	Added an optional parameter to specify what filename inside an archive to use when loading from zip

	Added support for loading multiple sets of library_* nodes

	Refactored asset information into a separate module. Fixed #12

	Refactored Camera into PerspectiveCamera and OrthographicCamera, inheriting from Camera

Bug Fixes

	Changed Collada IndexedLists attributes to be properties. Fixed Issue #14

	Updated scene to use a local scope when nodes are instantiated inside a scene

	Changed parsing to raise DaeMalformedError when an lxml parser exception is thrown

	Fixed bug when loading an <image> tag local to an <effect> not showing up in Collada.images

	Fixed bug when loading an empty <polygons>

	Fixed bug in if statement when loading morph controllers

	Fixed bug when triangulating a length-0 polylist

	Updated install instructions for OS X and Ubuntu problems

	Fixed bugs in IndexedList from Issue #13

	Fixed a bug where using the same map twice in an effect would cause incorrrect output

	Changed geometry export to delete any sources in the vertices tag that no longer exist

	Changed library output to not output emtpy library nodes so validator doesn’t complain

	Add same checks in scene loading that was done in library_nodes loading so that if nodes are not found yet while loading, it will keep trying

	Changed the way library_nodes is loaded so that if a referenced node from instance_node is not loaded yet, it will keep trying

	Fixed bug where a triangles xml node would try to set an attribute to None

	Fixed bug in handling joints that influence 0 vertices

0.2.2 (2011-05-03)

	Changed the way instance_node is handled to actually maintain the mapping so it’s not lost when saving

	Added setdata function to CImage and made Effect compare only image path

	Fixed a bug when rewriting geometry sources

	Change primitive sources to point to the <vertices> tag when possible since other importers don’t like not having a <vertices> tag

	Export source data with only 7 decimal precision for better file size

	Prevent NaN from being the result of a normalize_v3 call

	Fixed bug where effect was not correctly reading all four color values

	Fixed a bug where a triangleset would not create its xml node when generated from a polylist

	Big speed increases for converting numpy data to strings

	Moved getInputs function to Primitive

	Added functions to triangleset to generate normals and get an input list

	Fixed bug in saving a scene node if there was no id

	Fixed some bugs/optimizations with saving

	Added function to test if an Effect is almost equal to another Effect

	Adding dynamic dependencies to setup.py

0.2.1 (2011-04-15)

	Fixed bug with saving existing files that didn’t have some library_ tags.

0.2 (2011-04-15)

	Many bugfixes

	polylist support

	polygons support without holes

	lines support

	blinn and constant material support

	More effect attributes

	Better support for auxiliary texture files

	Lights (directional, ambient, point, spot)

	lookat transform

	Experimental controller support (skin, morph)

	polygons/polylist can be triangulated

	Automatic computation of per-vertex normals

0.1 (2009-02-08)

	Initial release

	Triangles geometry

	Reads vertices and normals

	Multiple texture coordinate channels

	Phong and Lambert Materials

	Texture support using PIL

	Scene suppport for geometry, material and camera instances

	Transforms (matrix, rotate, scale, translate)

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 API Summary

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

API Summary

	Main
	collada.Collada

	collada.common.DaeObject

	Asset
	collada.asset.Contributor

	collada.asset.Asset

	collada.asset.UP_AXIS

	Geometry
	collada.geometry.Geometry

	collada.primitive.Primitive

	collada.triangleset.TriangleSet

	collada.lineset.LineSet

	collada.polylist.Polylist

	collada.polygons.Polygons

	Shapes
	collada.triangleset.Triangle

	collada.polylist.Polygon

	collada.lineset.Line

	Controller
	collada.controller.Controller

	collada.controller.Skin

	collada.controller.Morph

	Camera
	collada.camera.Camera

	collada.camera.PerspectiveCamera

	collada.camera.OrthographicCamera

	Light
	collada.light.Light

	collada.light.DirectionalLight

	collada.light.AmbientLight

	collada.light.PointLight

	collada.light.SpotLight

	Material
	collada.material.Material

	collada.material.Effect

	collada.material.CImage

	collada.material.Surface

	collada.material.Sampler2D

	collada.material.Map

	collada.material.OPAQUE_MODE

	Source
	collada.source.InputList

	collada.source.Source

	collada.source.FloatSource

	collada.source.NameSource

	collada.source.IDRefSource

	Scene
	collada.scene.Scene

	collada.scene.SceneNode

	collada.scene.Node

	collada.scene.NodeNode

	collada.scene.GeometryNode

	collada.scene.ControllerNode

	collada.scene.MaterialNode

	collada.scene.LightNode

	collada.scene.CameraNode

	collada.scene.ExtraNode

	collada.scene.Transform

	collada.scene.TranslateTransform

	collada.scene.RotateTransform

	collada.scene.ScaleTransform

	collada.scene.MatrixTransform

	collada.scene.LookAtTransform

	Bound
	collada.geometry.BoundGeometry

	collada.primitive.BoundPrimitive

	collada.triangleset.BoundTriangleSet

	collada.lineset.BoundLineSet

	collada.polylist.BoundPolylist

	collada.polygons.BoundPolygons

	collada.camera.BoundCamera

	collada.camera.BoundPerspectiveCamera

	collada.camera.BoundOrthographicCamera

	collada.controller.BoundController

	collada.controller.BoundMorph

	collada.controller.BoundSkin

	collada.controller.BoundSkinPrimitive

	collada.light.BoundLight

	collada.light.BoundAmbientLight

	collada.light.BoundDirectionalLight

	collada.light.BoundPointLight

	collada.light.BoundSpotLight

	collada.primitive.BoundPrimitive

	Exceptions
	collada.common.DaeError

	collada.common.DaeIncompleteError

	collada.common.DaeBrokenRefError

	collada.common.DaeMalformedError

	collada.common.DaeUnsupportedError

	collada.common.DaeSaveValidationError

	Util
	collada.util.toUnitVec

	collada.util.checkSource

	collada.util.normalize_v3

	collada.util.IndexedList

	Modules
	collada

	collada.camera

	collada.common

	collada.controller

	collada.geometry

	collada.light

	collada.lineset

	collada.material

	collada.polygons

	collada.polylist

	collada.primitive

	collada.scene

	collada.source

	collada.triangleset

	collada.util

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 Main

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

 	API Summary

Main

	collada.Collada
	This is the main class used to create and load collada documents

	collada.common.DaeObject
	This class is the abstract interface to all collada objects.

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 collada.Collada

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

 	API Reference

collada.Collada

	
class collada.Collada(filename=None, ignore=None, aux_file_loader=None, zip_filename=None, validate_output=False)

	Bases: object

This is the main class used to create and load collada documents

	
__init__(filename=None, ignore=None, aux_file_loader=None, zip_filename=None, validate_output=False)

	Load collada data from filename or file like object.

	Parameters:	
	filename – String containing path to filename to open or file-like object.
Uncompressed .dae files are supported, as well as zip file archives.
If this is set to None, a new collada instance is created.

	ignore (list) – A list of common.DaeError types that should be ignored
when loading the collada document. Instances of these types will
be added to errors after loading but won’t be raised.
Only used if filename is not None.

	aux_file_loader (function) – Referenced files (e.g. texture images) are loaded from disk when
reading from the local filesystem and from the zip archive when
loading from a zip file. If these files are coming from another source
(e.g. database) and/or you’re loading with StringIO, set this to
a function that given a filename, returns the binary data in the file.
If filename is None, you must set this parameter if you want to
load auxiliary files.

	zip_filename (str) – If the file being loaded is a zip archive, you can set this parameter
to indicate the file within the archive that should be loaded. If not
set, a file that ends with .dae will be searched.

	validate_output (bool) – If set to True, the XML written when calling save() will be
validated against the COLLADA 1.4.1 schema. If validation fails, the
common.DaeSaveValidationError exception will be thrown.

Methods

	__init__([filename,ignore,...])
	Load collada data from filename or file like object.

	handleError(error)
	

	ignoreErrors(*args)
	Add exceptions to the mask for ignoring or clear the mask if None given.

	save()
	Saves the collada document back to xmlnode

	
geometries

	A list of collada.geometry.Geometry objects. Can also be indexed by id

	
controllers

	A list of collada.controller.Controller objects. Can also be indexed by id

	
animations

	A list of collada.animation.Animation objects. Can also be indexed by id

	
lights

	A list of collada.light.Light objects. Can also be indexed by id

	
cameras

	A list of collada.camera.Camera objects. Can also be indexed by id

	
images

	A list of collada.material.CImage objects. Can also be indexed by id

	
effects

	A list of collada.material.Effect objects. Can also be indexed by id

	
materials

	A list of collada.material.Effect objects. Can also be indexed by id

	
physics_models

	A list of collada.physics_model.PhysicsModel objects. Can also be indexed by id

	
kinematics_models

	A list of collada.kinematics_model.KinematicsModel objects. Can also be indexed by id

	
articulated_systems

	A list of collada.articulated_system.ArticulatedSystem objects. Can also be indexed by id

	
nodes

	A list of collada.scene.Node objects. Can also be indexed by id

	
scenes

	A list of collada.scene.Scene objects. Can also be indexed by id

	
physics_scenes

	A list of collada.physics_scene.PhysicsScene objects. Can also be indexed by id

	
kinematics_scenes

	A list of collada.kinematics_scene.KinematicsScene objects. Can also be indexed by id

	
errors = None

	List of common.common.DaeError objects representing errors encountered while loading collada file

	
scene = None

	The default scene. This is either an instance of collada.scene.Scene or None.

	
ikscene = None

	The default kinematics_scene . This is either an instance of collada.kinematics_scene.InstanceKinematicsScene or None.

	
ipscenes = None

	The default physics_scenes . This is a lsit of of collada.kinematics_scene.InstancePhysicsScene

	
assetInfo = None

	Instance of collada.asset.Asset containing asset information

	
xmlnode = None

	ElementTree representation of the collada document

	
ignoreErrors(*args)

	Add exceptions to the mask for ignoring or clear the mask if None given.

You call c.ignoreErrors(e1, e2, ...) if you want the loader to ignore those
exceptions and continue loading whatever it can. If you want to empty the
mask so all exceptions abort the load just call c.ignoreErrors(None).

	
save()

	Saves the collada document back to xmlnode

	
write(fp)

	Writes out the collada document to a file. Note that this also
calls save() so avoid calling both methods to save performance.

	Parameters:	file – Either the file name to write to or a file-like object

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 collada.common.DaeObject

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

 	API Reference

collada.common.DaeObject

	
class collada.common.DaeObject

	Bases: object

This class is the abstract interface to all collada objects.

Every <tag> in a COLLADA that we recognize and load has mirror
class deriving from this one. All instances will have at least
a load() method which creates the object from an xml node and
an attribute called xmlnode with the ElementTree representation
of the data. Even if it was created on the fly. If the object is
not read-only, it will also have a save() method which saves the
object’s information back to the xmlnode attribute.

	
__init__()

	x.__init__(...) initializes x; see help(type(x)) for signature

Methods

	load(collada,localscope,node)
	Load and return a class instance from an XML node.

	save([recurse])
	Put all the data to the internal xml node (xmlnode) so it can be serialized.

	
xmlnode = None

	ElementTree representation of the data.

	
static load(collada, localscope, node)

	Load and return a class instance from an XML node.

Inspect the data inside node, which must match
this class tag and create an instance out of it.

	Parameters:	
	collada (collada.Collada) – The collada file object where this object lives

	localscope (dict) – If there is a local scope where we should look for local ids
(sid) this is the dictionary. Otherwise empty dict ({})

	node – An Element from python’s ElementTree API

	
save(recurse=True)

	Put all the data to the internal xml node (xmlnode) so it can be serialized.
:param recurse: if True, will call save on the child nodes, otherwise will only save info pertaining to this node

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 Asset

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

 	API Summary

Asset

	collada.asset.Contributor
	Defines authoring information for asset management

	collada.asset.Asset
	Defines asset-management information

	collada.asset.UP_AXIS
	The up-axis of the collada document.

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 collada.asset.Contributor

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

 	API Reference

collada.asset.Contributor

	
class collada.asset.Contributor(author=None, authoring_tool=None, comments=None, copyright=None, source_data=None, xmlnode=None)

	Bases: collada.common.DaeObject

Defines authoring information for asset management

	
__init__(author=None, authoring_tool=None, comments=None, copyright=None, source_data=None, xmlnode=None)

	Create a new contributor

	Parameters:	
	author (str) – The author’s name

	authoring_tool (str) – Name of the authoring tool

	comments (str) – Comments from the contributor

	copyright (str) – Copyright information

	source_data (str) – URI referencing the source data

	xmlnode – If loaded from xml, the xml node

Methods

	__init__([author,authoring_tool,comments,...])
	Create a new contributor

	load(collada,localscope,node)
	

	save()
	Saves the contributor info back to xmlnode

	
author = None

	Contains a string with the author’s name.

	
authoring_tool = None

	Contains a string with the name of the authoring tool.

	
comments = None

	Contains a string with comments from this contributor.

	
copyright = None

	Contains a string with copyright information.

	
source_data = None

	Contains a string with a URI referencing the source data for this asset.

	
xmlnode = None

	ElementTree representation of the contributor.

	
save()

	Saves the contributor info back to xmlnode

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 collada.asset.Asset

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

 	API Reference

collada.asset.Asset

	
class collada.asset.Asset(created=None, modified=None, title=None, subject=None, revision=None, keywords=None, unitname=None, unitmeter=None, upaxis=None, contributors=None, xmlnode=None)

	Bases: collada.common.DaeObject

Defines asset-management information

	
__init__(created=None, modified=None, title=None, subject=None, revision=None, keywords=None, unitname=None, unitmeter=None, upaxis=None, contributors=None, xmlnode=None)

	Create a new set of information about an asset

	Parameters:	
	created (datetime.datetime) – When the asset was created. If None, this will be set to the current date and time.

	modified (datetime.datetime) – When the asset was modified. If None, this will be set to the current date and time.

	title (str) – The title of the asset

	subject (str) – The description of the topical subject of the asset

	revision (str) – Revision information about the asset

	keywords (str) – A list of words used for search criteria for the asset

	unitname (str) – The name of the unit of distance for this asset

	unitmeter (float) – How many real-world meters are in one distance unit

	upaxis (collada.asset.UP_AXIS) – The up-axis of the asset. If None, this will be set to Y_UP

	contributors (list) – The list of contributors for the asset

	xmlnode – If loaded from xml, the xml node

Methods

	__init__([created,modified,title,...])
	Create a new set of information about an asset

	load(collada,localscope,node)
	

	save()
	Saves the asset info back to xmlnode

	
created = None

	Instance of datetime.datetime indicating when the asset was created

	
modified = None

	Instance of datetime.datetime indicating when the asset was modified

	
title = None

	String containing the title of the asset

	
subject = None

	String containing the description of the topical subject of the asset

	
revision = None

	String containing revision information about the asset

	
keywords = None

	String containing a list of words used for search criteria for the asset

	
unitname = None

	String containing the name of the unit of distance for this asset

	
unitmeter = None

	Float containing how many real-world meters are in one distance unit

	
upaxis = None

	Instance of type collada.asset.UP_AXIS indicating the up-axis of the asset

	
contributors = None

	A list of instances of collada.asset.Contributor

	
xmlnode = None

	ElementTree representation of the asset.

	
save()

	Saves the asset info back to xmlnode

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 collada.asset.UP_AXIS

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

 	API Reference

collada.asset.UP_AXIS

	
class collada.asset.UP_AXIS

	The up-axis of the collada document.

	
X_UP = 'X_UP'

	Indicates X direction is up

	
Y_UP = 'Y_UP'

	Indicates Y direction is up

	
Z_UP = 'Z_UP'

	Indicates Z direction is up

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 Geometry

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

 	API Summary

Geometry

[image: Inheritance diagram of collada.geometry]

[image: Inheritance diagram of collada.lineset.LineSet, collada.triangleset.TriangleSet, collada.polylist.Polylist, collada.polygons.Polygons]

	collada.geometry.Geometry
	A class containing the data coming from a COLLADA <geometry> tag

	collada.primitive.Primitive
	Base class for all primitive sets like TriangleSet, LineSet, Polylist, etc.

	collada.triangleset.TriangleSet
	Class containing the data COLLADA puts in a <triangles> tag, a collection of

	collada.lineset.LineSet
	Class containing the data COLLADA puts in a <lines> tag, a collection of

	collada.polylist.Polylist
	Class containing the data COLLADA puts in a <polylist> tag, a collection of

	collada.polygons.Polygons
	Class containing the data COLLADA puts in a <polygons> tag, a collection of

 Copyright 2011, Jeff Terrace and contributors.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	collada15spec

 	v0.4

 collada.geometry.Geometry

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pycollada 0.4 documentation

 	API Reference

collada.geometry.Geometry

	
class collada.geometry.Geometry(collada, id, name, sourcebyid, primitives=None, extras=None, xmlnode=None, double_sided=False)

	Bases: collada.common.DaeObject

A class containing the data coming from